3.1 AESTHETICS

The aesthetic value of an area is a measure of its visual character and quality, combined with the viewer response to the area (Federal Highway Administration 1988:26–27, 37–43, 63–72). Scenic quality can best be described as the overall impression that an individual viewer retains after driving through, walking through, or flying over an area (U.S. Bureau of Land Management 1980:2–3). Viewer response is a combination of viewer exposure and viewer sensitivity. Viewer exposure is a function of the number of viewers, number of views seen, distance of the viewers, and viewing duration. Viewer sensitivity relates to the extent of the public’s concern for a particular viewshed.

Identifying a project area’s visual resources and conditions involves three steps.

1. Objective identification of the visual features (visual resources) of the landscape.

2. Assessment of the character and quality of those resources relative to overall regional visual character.

3. Determination of the importance to people, or sensitivity, of views of visual resources in the landscape.

These terms and criteria are described in detail below.

Visual Character

Natural and artificial landscape features contribute to the visual character of an area or view. Visual character is influenced by geologic, hydrologic, botanical, wildlife, recreational, and urban features. Urban features include those associated with landscape settlements and development, including roads, utilities, structures, earthworks, and the results of other human activities. The perception of visual character can vary significantly seasonally, even hourly, as weather, light, shadow, and elements that compose the viewshed change. The basic components used to describe visual character for most visual assessments are the elements of form, line, color, and texture of the landscape features (U.S. Department of Agriculture Forest Service 1995:28–34, 1-2-1-15; FHWA1988:37–43). The appearance of the landscape is described in terms of the dominance of each of these components.

Visual Quality

Visual quality is evaluated using the well-established approach to visual analysis adopted by the FHWA, employing the concepts of vividness, intactness, and unity (FHWA1988:46–59; Jones et. al. 1975:682–713), described below.

- Vividness is the visual power or memorability of landscape components as they combine in striking and distinctive visual patterns.

- Intactness is the visual integrity of the natural and human-built landscape and its freedom from encroaching elements; this factor can be present in well-kept urban and rural landscapes, and in natural settings.
• Unity is the visual coherence and compositional harmony of the landscape considered as a whole; it frequently attests to the careful design of individual components in the landscape.

Visual quality is evaluated based on the relative degree of vividness, intactness, and unity, as modified by its visual sensitivity. High-quality views are highly vivid, relatively intact, and exhibit a high degree of visual unity. Low-quality views lack vividness, are not visually intact, and possess a low degree of visual unity.

Visual Exposure and Sensitivity

The measure of the quality of a view must be tempered by the overall sensitivity of the viewer. Viewer sensitivity or concern is based on the visibility of resources in the landscape, proximity of viewers to the visual resource, elevation of viewers relative to the visual resource, frequency and duration of views, number of viewers, and type and expectations of individuals and viewer groups.

The importance of a view is related in part to the position of the viewer to the resource; therefore, visibility and visual dominance of landscape elements depend on their placement within the viewshed. A viewshed is defined as all of the surface area visible from a particular location (e.g., an overlook) or sequence of locations (e.g., a roadway or trail) (FHWA1988:26–27). To identify the importance of views of a resource, a viewshed must be broken into distance zones of foreground, middleground, and background. Generally, the closer a resource is to the viewer, the more dominant it is and the greater its importance to the viewer. Although distance zones in a viewshed may vary between different geographic regions or types of terrain, the standard foreground zone is 0.25–0.5 mile from the viewer, the middleground zone from the foreground zone to 3–5 miles from the viewer, and the background zone from the middleground to infinity (Litton 1968:3).

Visual sensitivity depends on the number and type of viewers and the frequency and duration of views. Visual sensitivity is also modified by viewer activity, awareness, and visual expectations in relation to the number of viewers and viewing duration. For example, visual sensitivity is generally higher for views seen by people who are driving for pleasure, people engaging in recreational activities such as hiking, biking, or camping, and homeowners. Sensitivity tends to be lower for views seen by people driving to and from work or as part of their work (U.S. Department of Agriculture Forest Service 1995:3-3–3-13; FHWA1988:63–72; U.S. Soil Conservation Service 1978:3, 9, 12). Commuters and non-recreational travelers have generally fleeting views and tend to focus on commute traffic, not on surrounding scenery; therefore, they are generally considered to have low visual sensitivity. Residential viewers typically have extended viewing periods and are concerned about changes in the views from their homes; therefore, they are generally considered to have high visual sensitivity. Viewers using recreation trails and areas, scenic highways, and scenic overlooks are usually assessed as having high visual sensitivity.

Judgments of visual quality and viewer response must be made based in a regional frame of reference (U.S. Soil Conservation Service 1978:3). The same landform or visual resource appearing in different geographic areas could have a different degree of visual quality and sensitivity in each setting. For example, a small hill may be a significant visual element on a flat landscape but have very little significance in mountainous terrain.
3.1.1 Existing Conditions

3.1.1.1 Regulatory Setting

There are no roadways near the project site that are designated in federal or State plans as a scenic highway or route worthy of protection for maintaining and enhancing scenic viewsheds. The following State and local regulations apply.

Local

Scenic resources are the unique features that provide attractive vistas. For the City of Lancaster, major visual resources include local views of Little Buttes, the foothill area, Quartz Hill, Plute Ponds, and Little Rock Wash. Only the foothills, Quartz Hill and Little Buttes are visible from the project site.

City of Lancaster General Plan 2030

The Plan for the Natural Environment of the City of Lancaster General Plan 2030 includes specific goals, objectives, policies, and specific actions related to scenic resources. Those that apply to the proposed project are listed are below:

Goal 3: To identify the level of natural resources needed to support existing and future development within the City and its sphere of influence, and ensure that these resources are managed and protected.

Objective 3.8: Preserve and enhance important views within the City, and significant visual features which are visible from the City of Lancaster.

Policy 3.8.1: Preserve views of surrounding ridgelines, slope areas and hilltops, as well as other scenic vistas (see also Policy 19.2.5).

Specific Action 3.8.1(a): Encourage the creation of vistas and view corridors of community or neighborhood value during the development review process, through the siting of buildings to avoid blocking views and view corridors.

Policy 3.8.2: Explore the potential for establishing scenic corridors within the Study Area.

Specific Action 3.8.2(a): Conduct a study to determine the potential for designating certain streets within the Study Area as scenic corridors. If it is determined that certain streets would merit such identification, develop a scenic corridor plan which considers the following:

- An emphasis on roadway patterns and grades that fit the natural topography along secondary arterials, collector, and local streets;
- Acquisition of wider rights-of-way than comparable, non-scenic roadways to increase the field of vision along the street and to accommodate appropriate landscaping and street furniture;
- Elimination, to the greatest extent feasible, of unsightly development and outdoor and/or off-site advertisements;
• Provision of vegetative screens for potentially objectionable views;
• Provision of appropriate view corridors; and
• Provision of roadside parking areas and lookouts where warranted.

Goal 19: To achieve an attractive and unique image for the community by creating a sustainable, cohesive and enduring built environment.

Policy 19.2.5: Create a network of attractive paths and corridors that encourage a variety of modes of transportation within the city (see also Policy 3.8.1).

City of Lancaster General Plan 2030 Master Environmental Assessment

There are no officially designated scenic routes or highways within the study area; however, the Master Environmental Assessment identifies local roadways which could potentially serve as scenic routes. These local roadways are listed below and are depicted in Figure 12-1, Scenic Resources, of the Master Environmental Assessment:

Antelope Valley Freeway: Within the study area (Avenues A to M), this route has long range views of the San Gabriel Mountains to the southwest, south, and southeast, and far-off views of the San Bernardino Mountains to the southeast and the Tehachapi Mountains to the northwest. Where it runs at grade, views from the freeway provide travelers with their primary introduction to the character of the Lancaster area. To the north, this route provides close in views of open desert lands.

Avenue K: This route has views of the San Gabriel Mountains to the south and the Portal Ridge foothills to the southwest, from the Antelope Valley freeway west to 110th Street West.

Avenue M: Between the Antelope Valley Freeway and 60th Street West, this route passes by Quartz Hill and has views of the San Gabriel Mountains to the south.

60th Street West: Between Avenues K and M, this route has views of the Portal Ridge to the west and the San Gabriel foothills to the south.

90th Street West: This route has long-range views of the San Gabriel Mountains to the south and southwest. In the northern portion of the study area, this route provides close-in views of open desert and the Tehachapi Mountains to the northwest.

3.1.2 Environmental Setting

Regional Visual Character

The project site is located in the Antelope Valley in the northern portion of Los Angeles County, completely within the City of Lancaster. All of the gen-tie routes, with the exception of Gen-Tie Route 2, are located partially within unincorporated Los Angeles County. For purposes of the visual analysis, the project region, as discussed in this section, is considered the area within a 30 mile radius of the project site. Palmdale and the communities of Acton, Pearblossom, Quartz Hill,
Rosamond, Mojave, and Edwards Air Force Base are located within this 30 mile radius; however, these communities would not be impacted by the project’s development. Most regional development occurs along transportation corridors, such as Highway 14 which runs roughly through the middle of the region. The San Gabriel, Sierra Pelona and Liebre Mountains and surrounding foothills to the south and southwest of the project site, are an integral part of the region’s visual character. These mountains provide topographical visual interest compared to the flat valley floor. Northeast of the San Gabriel, Sierra Pelona and Liebre Mountains, open rural land, scattered with rural development and energy infrastructure, becomes increasingly urbanized near the limits of the City of Lancaster. Rural land in the region is predominantly vacant or developed with various energy infrastructure, including wind, solar, and electrical transmission lines. A patchwork of urban uses, rural lands, and open desert separates the cities and other communities within the region from one another. These spaces offer expansive views that extend over the valley floor to the northeast and San Gabriel, Sierra Pelona and Liebre Mountains to the south and southwest. These landscape views are strongly characteristic of the Antelope Valley and contribute to the regional identity.

A mix of rural/agricultural, developed, and natural landscapes characterizes the project region. Water features are very limited in the desert landscape.

**Visual Character of Project Vicinity**

For the purposes of the visual analysis, the project vicinity is defined as the area within approximately 7.0 miles of the project site. Key observation viewpoints (KOPs), shown in Figure 3.1-1, have been chosen for their representation of the relative landscape and affected viewers. Representative photographs from these locations are shown in Figures 3.1-2 through 3.1-6, including panoramic context images approximately 90 degrees in each direction (180 degrees total). The project site is located at the eastern base of the San Gabriel foothills, immediately north of the California Aqueduct, approximately six miles west of Highway 14. The vicinity is comprised primarily of rural/residential and open space land uses and is characterized by gradual change in elevation and terrain approaching the Aqueduct. Highway 14, Avenue K, and 90th Street West, as outlined in the City of Lancaster’s General Plan, are designated as local scenic roadways. Views of the proposed project will be available but limited due to distance and intervening, rolling terrain. Views from residential subdivisions to the east represent the greatest concentration of city residents (Figure 3.1-2, KOP 01 and Figure 3.1-4, KOP 03). The visual character of the existing landscape is of undeveloped rolling foothill landforms with low desert landcover in the form of grasses and shrubs. Notable manmade alterations include large-scale linear transmission towers and poles; in addition to other utility scale solar projects and regional support infrastructures such as the Antelope Substation. These features are most prevalent in conditions where their profile is silhouetted against the skyline, creating a notable contrast.
Note: Visibility Analysis is based on topography only and does not factor in the potential for existing structures and vegetation to screen views to/from the project.
Lancaster Energy Center Solar Facility Project

Date of Photo: October 24, 2014
Time of Day: 11:32am PST
Camera Model: Nikon D700
Camera Lens: Nikon AF NIKKOR 50mm
Camera Height: 65 inches
Direction of View: West
Distance to Project: 0.87 miles

Distance to Project is estimated from the camera location to the nearest visible project component in the selected frame.

Figure 3.1-2
KOP 01 - W Ave L-8 and 76th St W
Lancaster Energy Center Solar Facility Project

**Figure 3.1-3**

KOP 02 - California Aqueduct between 80th Ave W and 85th Ave W

Lancaster Energy Center

*Distance to Project is estimated from the camera location to the nearest visible project component in the selected frame.*

**Image Data**

- **Date of Photo:** October 24, 2014
- **Time of Day:** 12:40pm PST
- **Camera Model:** Nikon D700
- **Camera Lens:** Nikon AF NIKKOR 50mm
- **Camera Height:** Sixty-five inches
- **Direction of View:** North
- **Distance to Project:** 0.55 miles

**CONTEXT - Original Photo (above left) within Original Panoramic Context**

**BEFORE - Original Photo**

**AFTER - Photo Simulation**

**Date:** March 10, 2015     **Rev:** 01

**Photography:** Dalton LaVoie, Landscape Architect       **Modeling:** Ed White, Graphic Designer & Dalton LaVoie, Landscape Architect      **Geographic Positioning and Bearings:** Hubert Switalski, Archaeologist and Kate Gross, Biologist
Figure 3.1-4
KOP 03 - W Ave K between 62nd St W and 65th St W
Lancaster Energy Center
Lancaster Energy Center Solar Facility Project

Before - Original Photo

After - Photo Simulation

Context - Original Photo (above left) within Original Panoramic Context

*Distance to Project is estimated from the camera location to the nearest visible project component in the selected frame.

Figure 3.1-6

KOP 05 - Antelope Valley California Poppy Reserve

Lancaster Energy Center
The California Aqueduct is the major waterway in the project vicinity and is used for active and passive recreation (e.g., walking, jogging, biking and fishing, etc.). Views from the Aqueduct are available from the higher vantage point above the project site across the valley floor. The public use areas along the Aqueduct are located south of the project site (Figure 3.1-3, KOP 02) and offer panoramic views of the valley and urban areas.

Views toward the project site from the Antelope Valley California Poppy Preserve are available from access roads and trails (Figure 3.1-6, KOP 05). The project site is a portion of expansive elevated panoramic views of the surrounding landscape. 90th Street West is identified as a potentially scenic route in the City of Lancaster General Plan 2030. Del Sur Elementary is located along this route (Figure 3.1-5, KOP 04) and has views to the south of the Sierra Pelona Mountains. Many of these views are partially screened by street trees and solar energy infrastructure has become a significant element of the view to the south.

In addition to local scenic roadways identified in the project vicinity, the rolling desert terrain often allows for scenic views from high points along trails and ridges, and from rural residential locations elevated above the valley floor out and over the desert landscape. These views are comprised of the San Gabriel rolling desert foothills that transition to the patchwork of the valley’s flat desert floor.

A small number of scattered rural residences, existing energy infrastructure, solar developments, and a few businesses, described in more detail in Viewer Groups and Viewer Response, are within the project vicinity. The largest trees in the vicinity of the project site are associated with residential landscaping while the rest of the landscape is largely desert scape. The native vegetation offered in the area provides for a varying contrast with the desert landscapes’ monotone colors in the spring months when seasonal rains support vegetation growth. Most notably the area and project site support California Poppies (Eschscholzia californica) in addition to other native wildflowers. High voltage utility lines are a prominent vertical visual resource in the project vicinity, with steel lattice support structures and steel and wood mono poles supporting the Antelope Substation. In addition, a series of wooden utility poles and associated lines, paralleling local roadways, and the project’s vicinity is traversed by a lattice steel transmission line.

Wooden utility pole lines are in keeping with the rural visual character, while the lattice steel transmission lines do detract from the visual character of the project site. Views in the vicinity are composed of gently rolling terrain, desert scape, rural residences and businesses, roadways, and man-made features (concrete lined waterways, wooden utility poles, and transmission lines) back-dropped by the San Gabriel Mountains and flat valley floor which extends east from the foot of the range and into the distant background. The overall visual character contains moderate scenic value due to the elevation quality of the rolling terrain contrasting against the adjacent flat valley floor, with relatively few man-made features that detract from the overall quality of views within the landscape.
Viewer Groups and Viewer Response

Residents

Residents along Avenue L would have views of the project site. In addition, there are residences located southeast of the project site along West Avenue L-8, 76th Street West, 72nd Street West, and northeast along 65th Street West. All residents listed above have or would have views of the project site. However, the rolling, existing vegetation, transmission lines, and terrain limits the viewer's ability to see the project site in its entirety. Residents are likely to have a high sensitivity to visual changes at the project site because they are likely to have a high sense of ownership of views of the surrounding picturesque landscape that is largely undeveloped. However, private views from individual residences are not protected under California State Law.

Businesses

The California State Prison, Los Angeles County is located approximately 3 miles northeast of the intersection of Avenue L and 80th Street West, which is the eastern most point of the project site. This facility would have limited views of the project site because of the rolling terrain, and existing urban development.

Recreationists

Recreationists include people using the access roads in the project area and along the California Aqueduct for walking, jogging, running, or cycling. Given the distance between the project site and larger residential areas, the number of recreationists is anticipated to be relatively small. Recreationists are likely to be highly sensitive to visual changes at the project site. They are more likely to regard the natural and built surroundings as a holistic visual experience. They are accustomed to the presence of solar or energy infrastructure in the project vicinity, with existing solar arrays located northeast of the project site and the Antelope Substation. However, the panels on the project site would be introduced into the foreground distance zone resulting in a higher degree of visual impact.

Roadway Users

Viewers who frequently travel Highway 138/14 and local roadways generally possess low visual sensitivity to their surroundings. Travelers on Highway 138/14 may have glimpses of the project site, but they would be traveling at high rates of speed. In addition, the elevation of Highway 138/14 in relation to existing development and terrain precludes many views of the project site. Travelers on local roadways include rural residents, workers, people accessing Del Sur Elementary School, and commuters driving to the businesses in the area. Their views toward the site are also often obscured by existing development and energy facilities, except when in very close proximity to the project site or when an elevated vantage point affords views. The passing landscape becomes familiar for roadway users, and their attention typically is not focused on the passing views. At standard roadway speeds, views are of short duration and roadway users are fleetingly aware of surrounding traffic, road signs, their immediate surroundings within the automobile, and other visual features. These viewers have low sensitivity to their surroundings because their focus is concentrated on driving and roadway conditions. Several roadways in
proximity to the project are identified as potential scenic roadways in the City of Lancaster General Plan 2030. Views from these roadways are evaluated in Impact AES-2.

### 3.1.3 Environmental Impacts

This section describes the visual resources impact analysis for the proposed project. It explains the methods used to determine the impacts of the proposed project, lists the thresholds used to conclude whether an impact would be significant, and provides measures to mitigate significant impacts.

**Methodology for Analysis**

Using the concepts and terminology previously described and the thresholds of significance, analysis of the visual effects of the proposed project are based on the following.

- Direct field observation from vantage points, including neighboring streets, properties, and roadways and photographic documentation of key views of and from the project site conducted in October 2014.
- Evaluation of regional visual context.
- Review of project construction drawings.
- Review of the project in regard to compliance with state and local ordinances and regulations and professional standards pertaining to visual quality.
- KOPs depicting before and after visual conditions.

**Thresholds of Significance**

According to the CEQA Guidelines’ Appendix G Environmental Checklist the following questions were analyzed and evaluated to determine whether impacts to aesthetics are significant. Would the proposed project:

- Have a substantial adverse effect on a scenic vista?
- Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic building within a state scenic highway?
- Substantially degrade the existing visual character or quality of the site and its surroundings?
- Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?
3.1.3.1 Project Impact Analysis and Mitigation Measures

Scenic Vista

| Impact AES-1 | The proposed project would not have a substantial adverse effect on a scenic vista. |

**Impact Analysis**

The flat topographic nature of the majority of the site transitions to a gentle increase in elevation change as it approaches the San Gabriel foothills and California Aqueduct. With the increase in topography or terrain, views of scenic vistas are often available from high points along local roadways, trails, and residential locations. The San Gabriel foothills transition down to the valley floor in a patchwork of rural residential uses, energy infrastructure and solar facilities. The proposed project would introduce solar arrays, collection lines, access roads, and six to eight feet high chain-link perimeter fencing with landscaping into the foreground (0.25-0.5 miles) and middle ground (3-5 miles) views of residences along the surrounding roadways, workers in the nearby area, recreationists, and to roadway travelers using the surrounding roadways.

The solar panels would be comprised of individual panels approximately 3.5 feet wide and 5.5 feet long. The panels would have a 2-foot clearance from the ground, for a total module height of approximately 9 to 12 feet from the ground, depending on the technology selected. The panels would be arranged in rows that run north-south across the project site, with the panels facing east-west. The panels would appear to be in straight lines when viewed in a 90° direction and looking directly north, east, south, or west toward the site or staggered diagonally when viewed in a 45° direction looking directly northeast, northwest, southeast, or southwest toward the site. The slightly elevated terrain would make the linear pattern of the array more pronounced compared to an installation at a lower elevation because viewers would be able to clearly see the array pattern on the undulating terrain. Existing vegetation would not be removed and would provide a continuous backdrop.

The array pattern would be evident from views along Avenue K. Figure 3.1-3 shows views available from access roads and trail areas near the California Aqueduct. Figure 3.1-2 is representative of views available to the residences along 76th St West. Figures 3.1-4 and 3.1-5 illustrate how the solar array appears to be a greyish color variation that drapes over the rolling terrain and contrasts against the browns and tans of the existing terrain (during the dry months). At a significant distance, the array has a similar appearance to a water surface covering the hillsides. The terrain allows views of portions of the array yet obscures views of other portions. Fencing, landscaping and electrical generation infrastructure is not apparent from these distances. They become more visible from locations where the project site is within the foreground of views; such as residents along Avenue L.

The switching station(s) shown in Figure 2-3, would be required by the proposed project depending on the ultimate gen-tie selection. The switching station would introduce a number of structures visible onsite. The project switching station and electrical components, shown in Figure 2-10, would be located along Avenue K and potentially at the terminus of Gen-tie Routes 4, 5, and 6. The corridor would have similar visual impacts to surrounding property owners regardless of the ultimate gen-tie route selected. The switching station would include breakers, switches,
meters, and related equipment that would be surrounded by perimeter security fencing. These features would be visible because the switching station infrastructure would be taller than the solar panels and the terrain may provide elevated viewing points toward the specific switching station locations. Terrain, landscaping and existing structures would also help to obscure views of the switching station from other vantage points.

The proposed project has the potential to use one of six gen-tie routes, or a combination of routes, which would connect to the Antelope Substation or the LADWP Barren Ridge-Rinaldi transmission line. There are wooden and lattice steel transmission lines and electrical infrastructure present in the project vicinity. The proposed project would not contribute to the overall deterioration of a scenic vista in the area given that the steel or wood poles used to ultimately tie into existing facilities are in isolated points away from large populations of viewers. Furthermore, the majority of the gen-tie routes will be undergrounded. Therefore, it is not anticipated that this would result in substantial visual changes affecting a scenic vista because of the small number of gen-tie line supporting structure and facilities, which would be designed in keeping with the existing visual character of the area.

However, the proposed project would introduce a considerable source of infrastructure and manmade features (solar panels, fencing, electrical equipment, etc.); altering the existing visual character of the landscape from a rural nature to a more developed setting; which would be seen by viewers of high, moderate, and low sensitivity.

The changes to the existing visual character resulting from project operations and maintenance would maintain the vividness, intactness, and unity resulting in an overall visual quality that is still moderately low. As described in Section 2, Project Description, project fencing would be six to eight feet in height with three-strands of barbed wire installed around the perimeter of the project site. Perimeter fencing surrounding the project site would be raised at regular intervals above ground level to allow for the passage of wildlife. The fence would be elevated anywhere from six to eight inches depending on finished grade. Raised openings would be approximately 50 feet wide and spaced at even intervals. The proposed project would also include landscaping improvements along portions of the perimeter of the project site to reduce visual impacts to adjacent property owners and roadway travelers. None of the vantage points identified and considered hold a moderate to high aesthetic value. Therefore, the proposed project would have a less than significant impact on scenic vistas.

**Level of Significance Before Mitigation**

Less Than Significant Impact.

**Mitigation Measures**

No mitigation is necessary.

**Level of Significance After Mitigation**

Less Than Significant Impact.
Scenic Resources within a State Scenic Highway

**Impact AES-2** The proposed project would not substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic building within a state scenic highway.

**Impact Analysis**

There are no State Scenic Highways in the vicinity of the project site. No views of the project site are available from Highway 2, the closest State Scenic Highway. Therefore, impacts on scenic resources along a State Scenic Highway resulting from the proposed project would not occur. The Lancaster Master Environmental Assessment identifies local roadways, which could potentially serve as scenic routes. Drivers along these roadways may be able to see portions of the proposed project following construction, but impacts to scenic views of the surrounding mountains and deserts would not be substantially adverse and views of the proposed project from these roadways would not substantially degrade the existing visual character of the vicinity. Mature trees that exist in the area are not designated as scenic resources. No rock outcroppings occur on the project site. Also there are no historic buildings located on the project site. As a result there are no impacts to scenic resources.

**Level of Significance Before Mitigation**

No Impact.

**Mitigation Measures**

No mitigation is necessary.

**Level of Significance After Mitigation**

No Impact.

**Visual Character**

**Impact AES-3** The proposed project would substantially degrade the existing visual character and quality of the site and its surroundings.

**Impact Analysis**

A project is considered to “substantially degrade” the visual character or quality of a site if it would have a strongly negative influence on the public’s experience and appreciation of the visual environment. As such, visual changes are always considered in the context of a site’s or locales visual sensitivity. Visual changes caused by the project are evaluated in terms of their visual contrast with the area’s predominant landscape elements and features, their dominance in views relative to other existing features, and the degree to which they could block or obscure views of aesthetically pleasing landscape elements.

The proposed project would result in permanent and temporary impacts to approximately 1,092 acres of land. Topography within the project site is relatively flat with a gentle upslope gradient trending towards the southern portion of the project site. The majority of the project site consists
of annual grasslands. The project consists of the construction and operation of a 150 MW AC, ground-mounted solar PV facility.

During the construction phase of the proposed project, construction vehicles, materials, trailers, and other temporary construction equipment would be located on the project site. These temporary construction-related visual elements would be removed at the completion of construction.

The proposed project would modify the existing character of the project site by introducing solar arrays and associated facilities and infrastructure that would be visible within the foreground and middleground of residences along the surrounding roadways, to workers in nearby areas, and to roadway travelers using surrounding roadways. The project site is located in close proximity to the Antelope Substation and several other solar facilities, transmission lines, and other associated infrastructure. The project site is also in an area designated for solar development.

Furthermore, under the CGC Section 65850.5(a), "it is the policy of the state to promote and encourage the use of solar energy systems and to limit obstacles to their use." The project is consistent with and furthers the purpose of the CGC Section 65850.5 which also provides that it is the "intent of the Legislature that local agencies not adopt ordinances that create unreasonable barriers to the installation of solar energy systems, including, but not limited to, design review for aesthetic purposes, and not unreasonably restrict the ability of homeowners and agricultural and business concerns to install solar energy systems."

The panels would be arranged in a manner that creates repetitive lines by the form and layout of the panels as illustrated in Figure 2-10. The panels would appear to be in straight lines when viewed in a 90° direction and looking directly north, east, south, or west toward the site or staggered diagonally when viewed in a 45° direction. The rolling terrain would make the linear pattern of the array more pronounced, compared to installation on level ground, because viewers would be able to clearly see the array pattern on the undulating terrain. Low-growing vegetation would be left in place under and between the solar panels and provide a continuous background. However, the onsite seasonal vegetation would be impacted. The changes to the existing visual character resulting from project operations and maintenance would reduce the vividness, intactness, and unity to be moderately low and result in an overall visual quality that is low. Although the PV systems would be located in a predominantly rural area, there is still the potential to impact residential viewers in close proximity to the project site. As such, the proposed project would result in potentially significant impacts to the existing visual character. The implementation of Mitigation Measures AES-1 through AES-3 would reduce the impacts to nearby viewers to a less than significant impact.

**Level of Significance Before Mitigation**

Potentially Significant Impact.

**Mitigation Measures**

**MM AES-1:** Prior to the issuance of any construction permits, the applicant shall submit a landscaping plan to the City for review and approval. Perimeter landscaping shall be provided...
around the portions of the project site that are visible from the roadways as shown on the final approved site plan. The landscaping plan shall be prepared by a landscape architect and shall utilize drought tolerant and preferably native plant species. All landscaping shall be installed prior to the project becoming operational.

**MM AES-2:** Due to the presence of single family residences on the north side of Avenue L, the perimeter landscaping on Avenue L between 80th Street West and 90th Street West shall be enhanced. The enhanced landscaping shall incorporate larger size plants at the time of planting and a wider variety of plant species to provide an aesthetically pleasing appearance and to screen the project site from view more quickly. This enhanced landscaping shall be noted on the landscaping plan identified in Mitigation Measure AES-1.

**MM AES-3:** The applicant shall paint all of the water tanks on the project site so that they are not shiny and reflective. The paint color shall be approved by the City of Lancaster prior to the issuance of construction permits.

**Level of Significance After Mitigation**

Less Than Significant Impact.

**Light or Glare**

| Impact AES-4 | The proposed project would not create a new source of substantial light or glare which would adversely affect day or nighttime views in the area. |

**Impact Analysis**

The project site is currently undeveloped and is devoid of lighting sources. Very minor sources of light are present from adjacent residences, residential street lights, and the Antelope Substation. The proposed project would include inward facing, low-level security lighting at entry and egress gates. Project lighting would be directed downward onto the project site and would be shielded to illuminate only intended areas. The project’s switching station would be lit to a minimum of 22 lux or 2 foot candles when staff are at the site working but would not be lit when the station is unmanned. These lighting measures would reduce the amount of light trespass falling outside the boundaries of the project site. However, there may still be small amounts of spillover lighting that occurs. This is not expected to affect residences adjacent to the project site north of Avenue L because no access locations are proposed along Avenue L immediately adjacent to a residence.

There currently is not a source of daytime glare at the project site. Therefore, the proposed project would introduce a new source of glare from the reflective surfaces of the solar panels. The panels would be dark blue or black in color with minimal light reflection and have microscopically irregular surface designed to trap the incident rays of sunlight; however, any incident radiation not absorbed and transmitted would be reflected. The proposed project would be installed in rows that run east-west for a fixed-tilt configuration or north–south for a tracking system that follows the sun in its path from east to west across the sky as the day progresses. Individual PV panels would be oriented to face in a southerly direction to maximize solar gain. When the sun is high in the sky (close to noon or in the summer) and the panel is low
to the ground, the law of reflection indicates that the reflected ray would be reflected in an upward direction toward the light source and back into the atmosphere away from terrestrial-based receptors. This reduces the potential for glare. However, when the sun is low on the horizon (near dawn or dusk or in the winter) and the panel is raised higher and more vertical, the potential for fugitive glare on terrestrial-based receptors increases. In addition, the gradual increase in terrain elevation from north to south has the ability to increase glare resulting from the proposed project because the slopes would expose more panel faces and create variable facets for the sun to reflect off of compared to a flat installation that generally creates one uniform facet (i.e. a uniform and even panel orientation). Residents, recreationists, and roadway travelers in close proximity to the panels may experience some glare.

Recreationists and roadway travelers would be transitory through the project area and the effects of glare on these viewers would, at most, last moments as they pass by the proposed project. The project site’s gradual increase in terrain elevation may also help to limit glare from the proposed project by obscuring views of the panels, such as along West Avenue L-8 and 76th Street West.

Existing residences north and southeast of and within 1 mile of the project site have long-term, permanent views of the proposed site. The glare impact on these residences is expected to be less than significant because the PV arrays would be predominately obstructed by the site’s rolling terrain, minimizing orientation to existing residences. Therefore, glare impacts on recreationists, roadway travelers, and existing residences would be less than significant. No mitigation measures are required.

**Level of Significance Before Mitigation**

Less than Significant Impact.

**Mitigation Measures**

No mitigation is necessary.

**Level of Significance After Mitigation**

Less Than Significant Impact.

**3.1.4 Cumulative Impacts**

The area surrounding the project site is rural in nature with a scattered residences, solar facilities, electrical transmission facilities, and undeveloped land. The public has largely uninterrupted views across these lands to the mountain ranges located to the south and west of the project site. Development of past, present and reasonably foreseeable projects continue to alter the visual environment in the City of Lancaster and Antelope Valley. In general, the visual resource impacts of the related projects are site-specific and would not necessarily combine with other projects that are not in the same viewshed to create a cumulative impact. There are numerous projects, identified in Table 3-3 that would be in close enough proximity to the project site that a cumulative effect could potentially occur. However, all proposed and reasonably foreseeable projects would be subject to design and landscaping requirements to ensure that they do not degrade visual character. The proposed project would be required to implement landscaping
and screening consistent with City design requirements and Mitigation Measures AES-1 through AES-3; therefore, the proposed project would not add to cumulative regional aesthetic impacts.